3 research outputs found

    Material inspection using new electromagnetic testing technology : coplanar capacitive sensing technique

    Get PDF
    Les matériaux diélectriques jouent un rôle important dans les applications industrielles et les domaines de la recherche scientifique et leur utilisation a augmenté ces dernières années. Leurs applications concernent l'industrie moderne des circuits intégrés et les réseaux d'antennes compacts. De plus, les composites structuraux légers dans l'industrie aérospatiale, les armures corporelles en Kevlar et les composites à matrice céramique pour la stabilité thermique dans les environnements chauds des moteurs sont des exemples de certaines des applications récemment développées des matériaux diélectriques. Par conséquent, la détection des défauts de ces matériaux diélectriques devient très importante pour le contrôle du processus de fabrication, l'optimisation de la conception et des performances des appareils électriques, et la surveillance et le diagnostic du système. Par conséquent, le besoin de tests de contrôle non destructifs (CND) précis des matériaux structurels et fonctionnels diélectriques a également augmenté. Cependant, le CND de ces matériaux n'est pas aussi développé que celui des métaux et de nouvelles approches pour évaluer la qualité de ces matériaux lors de la fabrication et de la maintenance n'ont pas encore été développées. Par conséquent, il sera utile de développer de nouvelles méthodes telles que des techniques de détection capacitive qui peuvent surmonter certaines des restrictions associées à d'autres techniques d'évaluation des matériaux diélectriques. La simulation numérique utilisant la modélisation par éléments finis (FEM) tridimensionnelle (3D) est utilisée dans le logiciel COMSOL Multiphysics pour simuler la distribution du champ électrique à partir d'un capteur capacitif coplanaire et la façon dont il interagit avec divers échantillons composés de différents types de défauts. Une analyse détaillée FEM est fournie pour étudier les paramètres de conception, y compris la forme/taille/distance des électrodes coplanaires pour évaluer et identifier les caractéristiques importantes des électrodes capacitives coplanaires, telles que la pénétration et la force du champ électrique en fonction du capteur propriétés géométriques. De plus, l'influence des différentes fréquences, du décollement et de la présence ou de l'absence d'une plaque de blindage métallique et d'une électrode de garde sur le résultat de sortie est analysée par la même méthode. En outre, la distribution du champ électrique, en fonction du nombre d'électrodes, à partir d'un capteur capacitif coplanaire multi-électrodes avec différents agencements d'électrodes d'entraînement et de détection, et comment ce champ peut être modifié en changeant l'agencement est simulé et illustré par le MEF 3D. Des expériences physiques sont réalisées avec plusieurs capteurs capacitifs coplanaires pour vérifier les résultats de la simulation et évaluer les performances de la sonde. Dans ces expériences, les performances d'imagerie du capteur, l'effet des paramètres de conception sur les performances du capteur, l'impact des divers matériaux testés et la faisabilité de la sonde capacitive coplanaire multi-électrodes seront pris en compte. La comparaison des résultats de simulation numérique et d'expériences physiques montre qu'ils sont en bon accord qualitatif.Dielectric materials have an extensive role in both industrial applications and scientific research areas and their use has increased in recent years. Furthermore, lightweight structural composites in the aerospace industry, Kevlar body-armour and ceramic-matrix composites for thermal stability in hot engine environments are examples of some of the recently developed applications of dielectric materials. Therefore, the flaw detection of these dielectric materials becomes markedly important for the process control in manufacturing, optimization of electrical apparatus design and performance, and system monitoring and diagnostics. Consequently, the need for accurate non-destructive testing (NDT) of dielectric structural and functional materials has also been increased. However, the NDT of such materials is not as well developed as those for metals and new approaches to evaluate the quality of these materials during manufacturing and maintenance have not yet been expanded. Therefore, it will be valuable to develop new methods such as capacitive sensing techniques which can overcome some of the restrictions associated with other techniques for assessing dielectric materials. The numerical simulation using three dimensional (3 D) Finite Element Modelling (FEM) is employed in COMSOL Multiphysics software to simulate the electric field distribution from a coplanar capacitive sensor and the way it interacts with various specimens composed of different types of defects. A detailed analysis FEM is provided to study the design parameters including the shape/size/distance of the coplanar electrodes to assess and identify the important features of the coplanar capacitive electrodes, such as the penetration and strength of the electric field as a function of sensor geometrical properties. In addition, the influence of the different frequencies, lift-off, and the presence or absence of a metal shielding plate and guard electrode on the output result is analyzed by the same method. Besides, the electric field distribution, as a function of the number of electrodes, from a multi-electrode coplanar capacitive sensor with different arrangements of driving and sensing electrodes, and how this field may be altered by changing the arrangement is simulated and illustrated by the 3D FEM. Physical experiments are carried out by several coplanar capacitive sensors to verify the simulation results and evaluate the performance of the probe. In these experiments, the imaging performance of the sensor, the effect of design parameters on the sensor performance, the impact of various materials under test, and the feasibility of the multi-electrode coplanar capacitive probe will be considered. Comparison of the numerical simulation results and physical experiments illustrate that they are in good qualitative agreement

    Influence of different design parameters on a coplanar capacitive sensor performance

    Get PDF
    Coplanar capacitive sensors are employed in Non-destructive Testing (NDT) methods to measure the difference in dielectric properties of the materials. The most important design parameters for a coplanar capacitive sensor include the shape, size, and separation distance of the electrodes which affect the sensor performance. In addition, the impact of the shielding plate and guard electrode should be considered. In the framework of this paper, numerical simulations and physical experiments are studied for two shapes of electrodes, triangular and rectangular, by examining different sizes and different separation distances between electrodes to assess and analyze the important features of the coplanar capacitive electrodes, such as the penetration and strength of the electric field as a function of sensor geometrical properties. Therefore, a detailed analysis of numerical simulation using Finite Element Modelling (FEM) is provided to study these geometric parameters. In addition, the influence of the different frequencies, lift-off, and the presence or absence of a metal shielding plate and guard electrode on the output result is analyzed. Finally, sensors were manufactured and several experiments were carried out under different configurations. Comparison of the numerical simulation results and physical experiments illustrate that they are in good qualitative agreement

    Numerical Simulation and Experimental Study of Capacitive Imaging Technique as a Nondestructive Testing Method

    No full text
    It was recently demonstrated that a coplanar capacitive sensor could be applied to the evaluation of materials without the disadvantages associated with the other techniques. This technique effectively detects changes in the dielectric properties of the materials due to, for instance, imperfections or variations in the internal structure, by moving a set of simple electrodes on the surface of the specimen. An AC voltage is applied to one or more electrodes and signals are detected by others. This is a promising inspection method for imaging the interior structure of the numerous materials, without the necessity to be in contact with the surface of the sample. In this paper, finite element (FE) modeling was employed to simulate the electric field distribution from a coplanar capacitive sensor and the way it interacts with a nonconducting sample. Physical experiments with a prototype capacitive sensor were also performed on a Plexiglas sample with subsurface defects, to assess the imaging performance of the sensor. A good qualitative agreement was observed between the numerical simulation and experimental result
    corecore